Sunday, 18 February 2024

Construction Innovation: Venture Capital and Contech Funding

What do we know given definition and measurement Issues?




Construction is often seen as a low R&D industry, with a low expenditure on R&D to revenue ratio compared to other industries. While that may be true for the many small and medium sized firms that make up the majority of the industry, many of the large firms do invest in R&D. A 2023 McKinsey report on construction technology (Contech) that ‘includes design software, robotics, and tools for the planning, scheduling, budgeting, and performance management of projects’ found USD$50 billion had been invested between 2020 and 2022. Their estimate based on Pitchbook data includes incumbents as well as startups and new entrants.

Incumbents like Project Frog (US), Balfour Beatty (UK) and Mirvac (Australia) have developed platforms, and there are many established offsite manufacturing and modular building Firms. There are partnerships between Trimble and Microsoft and Laing O’Rourke and Lenovo. Other examples are Autodesk’s recent integration of design and manufacturing systems, Skanska embedding wireless sensors in buildings, Holcim’s green cement, ARUP’s data collection systems, remote-controlled excavators from Caterpillar and Komatsu, the Hilti Jaibot, and software from OracleAconex and Procore. There are many more.

As those examples show, contractors are not the only firms doing R&D, so estimates for the industry are unreliable. R&D by professional service firms, and the construction materials, component and equipment manufacturing industries will not be included, although they have been responsible for many technical advances and the introduction of new products and equipment, such as drywall, plastic pipes, excavators, cranes, facades and lifts. This is a well-known problem when measuring construction R&D, and is a result of the industry classification system used by national statistical agencies.

This measurement problem is becoming more acute because, for the construction industry, a cycle of innovation has begun with new entrants attracting substantial R&D investment from outside the industry. Investment in construction R&D and innovation is now coming from private equity and venture capital (VC) funds such as Fifth Wall, Brick & Mortar, WND Ventures, Ironspring, Building Ventures, Dynamo, Foundamental and Australia’s Taronga Ventures.  

How much of the expenditure on R&D by incumbents is likely to be included in VC funding estimates? Although this expenditure should be taken into account for overall industry investment in Contech, many incumbents do not participate in VC. In fact, it is hard if not impossible to get a good estimate of Contech investment because it includes so many different areas associated in some way with the built environment, such as property and real estate, transport, energy and waste management, materials manufacturing and so on. Then there are areas associated with decarbonisation, such as measuring embodied carbon, the energy transition, retrofitting buildings etc. How to draw a boundary around such diverse topics is a major issue.

The table below demonstrates the extent of the measurement problem. It collects the latest estimates and total investment from the three sources reviewed in this post for the different time periods they cover, plus the 2023 McKinsey report that was not restricted to VC funding. There are a few key points to note. First, there are similar trends in their data with considerable variation but, second, wide differences are seen in the yearly figures, and third, the totals indicate significant cumulative investment.

Comparing the Foundamental ($25.4bn) and Kabri ($22.4bn) data for the same time period of 2017 to 2022 as McKinsey ($77bn), there may be something like a 60/40 split between VC and incumbent funding of Contech. That can only be a guesstimate because of the different sources used and the severe definitional and boundary issues around what is and is not included in these estimates of Contech.


Table 1. Estimates of Contech VC funding by year and totals USD$billion


This significant level of VC investment is a new development, before 2017 there was little interest in construction innovation from investors. Then a Californian start-up called Katerra reached a USD$1 billion valuation in 2017 followed by a $865mn investment in 2018 from Softbank. The company’s goal was complete vertical integration of design and construction, building factories to manufacturing cross laminated timber panels and then delivering and assembling the building onsite. Over five years Katerra went through four different business models as they sought to achieve sufficient scale to keep their factories busy, but in June 2021 filed for Chapter 11 bankruptcy and the factories were sold. The Katerra story was covered in a previous post here

Despite the failure of Katerra, and many other firms attempting to make the economics of manufactured housing work, there has been a rapid increase in VC investment in Contech since 2018. Venture capital funding is a significant metric because investment in startups is a proxy for innovation, and the development of IP and other forms of intangible capital. This post looks at three recent reports on VC investment in Contech.


Cemex Ventures Top 50

In January Cemex Ventures released their Top 50 Contech Startups 2024, the 5th edition of their Top 50 list. Cemex Ventures is the VC and innovation unit of Cemex, a global supplier of building materials. The 2019, 2020 and 2021 reports were only lists of companies, but the 2022 and 2023 reports have VC totals and other details like deal size and numbers. The source of their data is the Traxn VC database.

Their estimate for 2023 is USD$3.03bn, compared to $5.38bn in 2022, significantly higher than the Foundamental estimates below, particularly for 2023, no doubt due to differences in their data sets. Cemex found half (49.5%) was in initial seed rounds for early stage startups, and 23.3% was for Series A funding rounds for more mature companies. In 2023 nearly 90% of funding went to the US (44%) Canada (11%) and Europe (32%, including the UK with almost 10%).

Cemex Ventures divided funding into four ‘focus areas’:

  1. Green Construction: Processes, products and services that offset negative environmental impacts raised $1.06bn.

  2. Enhanced Productivity: Digital solutions aimed to increase efficiency through technical, data-driven solutions got $701mn.

  3. Future of Construction: AI, robotics and industrialized construction like 3D printing, BIM and autonomous equipment raised $690mn.

  4. Construction Supply Chain: Technologies that secure or track materials and fleets, manage builders’ inventories and material marketplaces got $584mn.


Figure 1. Four focus area


There is also 2023 data on a number of specific ‘topics’, which are more specific areas of interest.


Figure 2. Specific Contech topics



Where to draw the boundaries around the many and diverse areas of Contech, and how to define those areas, is an important issue because it should be possible to separate different topics or areas, for example Contech from Proptech and carbon accounting from energy efficiency. The Cemex Ventures division into four topics is a good place to start.


Foundamental

Another Contech VC estimate came from Foundamental, which found over USD$30bn was invested in Contech between 2014 and 2023. Their estimate for 2021 was $8.7bn, followed by $4.9bn in 2022, falling to $1.3bn in 2023. Figure 3 shows their data, where they have separated funding for Katerra.


Figure 3. Construction technology funding


 Source


The database Foundamental used is from Wallhack, an open source provider of VC investment in AEC-Tech and ConTech. They provide this explanation:

AEC-Tech contains pure Construction-Tech, but includes more. It is about fixing the building-world. In our definition, besides construction-tech, AEC-Tech also contains design solutions that also help architects and engineers, supply chain solutions that fix problems in the building world, solutions that help with the retrofitting of buildings and infrastructure, and fixes for skilled labor/blue-collar work and installers. It does NOT, however, include building operation, which would often be called Prop-Tech.

There are over 700 companies in the dataset, many of which have less than 10% of their portfolios invested in AEC-Tech. A group of ‘building world specialists’ can be selected. How these ‘building world specialists’ are differentiated from the broader AEC-Tech investors is not clear. This list has 81 companies, with the percentage of their portfolios invested in AEC-Tech ranging between 30% and 100%. Total investment in this group of companies is USD$42.4bn.

The start-ups included in these estimates of VC funding are by definition technology leaders, pushing at the technological frontier through experimentation and development. Frontier firms bring with them radical new production technologies. While these firms are new entrants, some incumbents are also on the frontier. Cemex is not the only incumbent investing in Contech VC, the Wallhack list also includes Bentley, Trimble, Autodesk, CRH and Suffolk among others. There are others not included, like Vinci with their Leonard fund.


Kabri Construction Research

Research by Kabri Construction Research referenced here used publicly available information and they note, as a result, it will underestimate both the number of startups and the amount raised. Kabri found 300 construction startups up to 2022. Their estimate for 2022 is USD$8.9bn, and for 2021 was $5.5bn.


Figure 4. Contech funding



Kabri divided the startups into 13 categories, explained as:

  1. Builders/Developers - Startups that are tackling the entire process of constructing a building, either as a builder or as a builder+developer. Many of these startups use prefabricated or modular construction to try to improve the process. Others such as Homebound, are focusing on improving the building experience with software. These startups are almost uniformly devoted towards residential construction. Examples: VeevBlokablePrescient

  2. Building Materials - Startups trying to develop new types of building materials. This includes things like low-carbon concrete, drywall alternatives, and smart glass. This category also includes what we might call ‘low level components’ - things that we might consider ‘simple parts’ rather than raw materials, such as BAMCore. Examples: ViewCarbicreteElectrasteel

  3. ADUs/Office Pods - Companies trying to sell small backyard homes or office units. Examples: CoverAdobuBoxabl

  4. Energy Use and Management - Startups aimed at improving building energy use. This includes companies like BlocPower (finances and install energy efficiency upgrades), as well as companies like BrainBox AI (which makes software to try to optimize HVAC use.) It also includes startups like Intellihot, which make more efficient water heaters. Examples: RedaptiveDandelion EnergyDomatic

  5. Marketplaces - Startups trying to connect the large number of buyers, sellers, and transaction parties that exist in the hugely fragmented construction industry. These range from workforce sourcing companies like Workrise, to construction equipment marketplaces like EquipmentShare, to companies that help homeowners find renovation contractors like Sweeten. Examples: AmastBuildZoom

  6. Distribution and Logistics - Startups trying to tackle the problem of getting building materials to the jobsite. Examples: RenoRunTulInfra.Market

  7. Construction Management Software - Startups that make software for jobsite coordination, progress tracking, task and document management, and other similar tasks. Examples: ProcoreFieldwireRedTeam

  8. Robotics - Startups trying to find ways to introduce robots onto the jobsite, or in other parts of the construction value chain. Examples: DustyCanvasToggle

  9. 3D Printing - Companies trying to use scaled-up 3D printing technology to fabricate entire buildings or building components. Examples: IconMighty BuildingsBranch Technology

  10. Fintech - Companies trying to improve the financial plumbing that the construction process uses. Examples: Built TechnologiesRigor.buildLevelset

  11. Datacapture and Digital Twins - Companies using some combination of drones, 360 degree cameras, hardhat mounted cameras, and other sensors to record and analyze jobsite data and track construction progress. Often utilize computer vision and machine learning techniques to process this data. Examples: OpenSpace.AIDoxel.AIVersatile

  12. Renovation/Repair/Maintenance - Companies trying to improve the process of maintaining a building. These range from software companies who offer maintenance subscriptions, to products that can monitor and report water usage and leaks, to companies that make bathroom renovation easier. Examples: Humming HomesBlock RenovationMade Renovation

  13. Other - Everything else that doesn’t fit into one of the above categories. This includes AR/VR startups, companies that make AEC design tools, companies that make software to streamline one particular workflow (what we might call “excel replacements”), construction insurance companies, and anything else that doesn’t fit into one of the above. Examples: UpCodesToricShepherd


Table 2. Funding by category


The post on Kabri concluded with some important points. First, ‘many, perhaps most, innovative building products don’t seem to come out of startups – they’re either small-scale developments from companies that don’t obtain VC … products from large, established suppliers … or from academia’. Second, a few companies have taken the bulk of investment. The top three categories in Table 2 ‘account for more than 50% of construction startup funding. Within each category a single company (Equipmentshare, Katerra and View respectively) accounts for 50-60% of total funding’. Note that Katerra and View have both failed.


Conclusion

Measurement problems are not a new issue in construction, productivity being the prime example. Even so, getting a clear picture of R&D and innovation investment in Contech is particularly challenging. Reports on VC funding come and go, covering different time periods and geographical areas, making comparisons difficult. The Cemex Ventures Top 50 reports for the last two years have annual total funding data included, and if they continue their reports that would be a set of consistent data. Foundamental may also keep their annual data updated, although they only have a grand total and do not have categories or topics.

As well as regular annual data some way of organising it is necessary. The Cemex four topics are probably too broad, while Kabri’s 13 may be too many. Somewhere in the middle would be a useful way of categorising the very diverse range of areas generally accepted as included in Contech. Kabri drew the boundary around things that could not be moved from a building, but included Building maintenance and management and Fintech companies. As Kabri note, including a startup in Contech is often a judgement call because their hardware or software can be used in other industries, drones are a good example.

The project delivery approach taken by Foundamental and McKinsey seems appropriate. This focuses on technology that in some way will (might) improve project creation and delivery, which is the traditional domain of the construction industry. It means property and real estate tech is excluded, but more controversially climate related tech too. That is an important omission because climate change is (IMO) the single biggest issue. However, given the number and variety of climate related tech startups this can be usefully considered a category of its own.

Many startups fail, and usually VC spreads its bets to manage the risk. Contech seems different, the bets are concentrated in construction or related built environment industries. Many funds in the databases used in the reports discussed here seem to be concentrated, with a small number of investments. Some of the biggest bets have already failed. Even Procore, seen as a Contech success story, is finding profitability hard to achieve Finally, there is a very large number of small Contech startups covering a wide range of topics. Unfortunately, numbers and diversity may not lead to success because fragmentation makes achieving scale more difficult, and consolidation only starts to happen when successful innovators emerge.


Figure 5. Innovation and Industry Structure




Thursday, 1 February 2024

Review of Richard Langlois' The Corporation and the Twentieth Century

 Langlois, R. 2023. The Corporation and the Twentieth Century: The history of American business enterprise, Princeton University Press. 


 

An exhaustive, detailed history of US business that continues Richard Langlois long-running dialogue with Alfred Chandler’s work on managerial capitalism. Ranging across all major C20 industries like railways, automobiles, aircraft, electrical appliances and computers, and loosely organised into periods of a couple of decades covering pre WW1, pre WW2, post WW2, stagflation and the final decades, each chapter looks at the political context, the development of key industries and the relevant technological innovations that drove the process: ‘It has been a central theme of the book that the large integrated corporation in the twentieth century owed its rise to prominence in significant part to the eclipse of the market and the growth of state power during the Depression and the World wars’ (p. 478). In the 1980s the wheel turned, market forces began to reassert themselves, new corporate structures emerged, and the boundaries of the firm shifted again. 

 

A focus of the book is the effects of regulation on industry. The early contest between Populists and Progressives that played out in anti-trust cases and Supreme Court decisions often led to regulations ‘misaligned’ with technology and market opportunity. In many cases consumer interest was secondary, with lower prices seen as evidence of anti-competitive behaviour as ‘American regulatory policy worked to segment markets, generally along lines of supply technology not market demand’ (p. 466). 

 

The institutional origins of regulators in key industries and their role in creating and maintaining cartels or oligopolies contradicts the view that the US favoured large corporations. In fact, the large, vertically integrated firm was an outcome of legal constraints on contracting that were intended to favour small businesses but had the opposite effect. Many regulated firms then underinvested in maintenance and innovation, leading to spectacular collapses like Penn State Railroad, Chrysler Corp and Pan Am, and the demise of other once great corporations like IT&T, RCA, Westinghouse and US Steel.

 

The role of technological opportunity, R&D and innovation is emphasised, battles over patents and standards discussed, and how disruptive tech eventually overcame regulatory barriers in industries like transport (containerisation and air freight), radio (AM and FM) and TV (broadcast networks and cable). Disruption in computing (transistors and integrated circuits), manufacturing (consolidation and lean production) and the near death experiences of IBM, Apple and GE are detailed: ‘The most disruptive new entry has often come not in the form of a small start-up but a large firm in a related area’ (p. 549). 


Intellectual contests of ideas and the increasing use of economics in regulation get short, non-technical explanations. Important business leaders and given credit when due and their failures dissected. For those interested in regulation and the role of government agencies, business history, and the interplay of technology and industry, this is a great read. 






Wednesday, 24 January 2024

Catch 22: Construction Innovation and Procurement

 


Source: https://www.statista.com/statistics/270233/percentage-of-global-rundd-spending-by-industry/



Construction is in a catch-22 situation, where neither industry incumbents nor its clients can rationally commit to significant, expensive investments in innovation for the vast majority of construction projects. Procurement has a significant effect on technological opportunity and innovation because the effects of appropriability of intellectual property (IP), substitutability between suppliers, and risks associated with innovation for clients are mutually reinforcing factors that have worked against innovation in construction. 

 

The development of new technology and increasing productivity requires investment in R&D and IP. If firms cannot capture the benefits of innovation and IP for some reason, because of imitation, piracy or secure supply of materials for example, they will not invest in innovation. Because the traditional tender method does not allow capture of IP and knowledge externalities by contractors, there is a perverse disincentive to innovate. Tendering rules or codes have been developed to maintain the integrity of the bidding process, not to encourage innovation, and a successful tenderer’s scope to be innovative is limited. There is opportunity to maximise profits within the tender price by novel ways of organising work or driving down subcontract prices, but bidders are not asked to put forward design suggestions, there are no criteria for evaluation of novel proposals, and tenderers cannot be treated equally if one is preferred on an alternative tender, which is non-conforming in terms of the original invitation. 

 

The answer often proposed is that the best way to increase innovation lies in changing the methods and systems used to procure building and construction projects. If contractors can make novel proposals to owners, productivity can improve, and society benefits from innovation. With non-traditional procurement methods such as design and construct (D&C), build, own, operate (BOO) or build and maintain (B&M), this disincentive is reduced because contractors can appropriate benefits of innovation and R&D through improved performance. 

 

It may not be that simple. If all firms have access to the same technology, and compete through continual, but gradual, improvement, they are subject to a ‘ratchet effect’. First identified in the 1930s by sociologists studying workers subject to performance pay, they found workers choose to restrict their output because they rationally anticipate that employers will respond to higher output by raising output requirements by cutting piecework pay or worker incentives within firms. It was also an unintended consequence of Soviet planning. If a factory met or exceeded its planned target, the target for subsequent years was increased, thus reducing incentives and effort for the factory manager. 

 

In construction the ratchet effect can be seen in bidding for projects, where tenderers will typically not deviate far from a client’s expected cost for the project, and all tenderers have access to the same information. Because of the ratchet effect, a firm avoids revealing a significant cost advantage on one project that might jeopardise margins on future projects. Importantly, it allows for innovations that improve productivity and efficiency, that are neither disruptive nor expensive to contractors but will deliver a windfall gain if a project comes in well under budget, which will be hidden from the client and competitors as much as possible. This suggests that there will be cost-reducing innovations available to contractors if they decide to invest, but the pressure to find them will be affected by client demands, upfront costs, market conditions and a competitor’s likelihood of using them. [1]

 

Also, clients avoid risk associated with innovation on their projects and do not include it in their budgets. Clients can act as a significant barrier to innovation because they are concerned about both construction costs and operating costs, and do not think they individually will benefit significantly from a successful innovation. Further, clients carry a significant share of innovation risk and as a result do not take on the risks of budget and time overruns or poor building performance, and other costs associated with innovation. This risk minimisation objective also applies to financiers and insurers of construction projects.

 

While this argument might be generally true, exceptions prove the rule. An example is the Heathrow Terminal 5 (T5) project. This project demonstrates the effect a determined client with a clear strategy to encourage innovation in order to improve performance can have. In its role as the client BAA took on all the risk for the ₤4.3 billion project, under the unique T5 Agreement that the 60 first tier contractors signed. In total, 15,000 suppliers were involved. The overall project was divided into 147 sub-projects, with an integrated team led by BAA responsible for each one. Unlike the majority of megaprojects, T5 was delivered on time and on budget. 

 

The key relevant point about T5 was that innovations were actively sought out and rewarded. These included product innovations in offsite fabrication such as the roof structure, technological innovations such as the tunnelling process and equipment, process innovations such as the two logistics centres and management innovations in the industrial relations, insurance provisions and supplier incentives built into the T5 Agreement. 

 

The risk associated with large, complex projects can provide the motivation for clients to pursue and reward innovation by major contractors and suppliers, who on T5 demonstrated a capability for innovation that is left unused under traditional tendering and procurement methods. However, most construction projects are less complex, many are standardized and repetitive, and clients have no reason to support innovations that might marginally affect their project’s delivery or performance but increase the risk of cost overruns. Construction is in a catch-22 situation, where neither industry incumbents nor its clients can rationally commit to significant, expensive investments in innovation for the vast majority of construction projects. 

 

The traditional procurement method does not allow capture of IP and knowledge externalities by tenderers. Therefore, many believe the best way to increase innovation lies in changing the methods and systems used to procure building and construction projects, but while there will be cost-reducing innovations available to contractors if they decide to invest, the pressure to find them will be affected by client demands, upfront costs, market conditions and a competitor’s likelihood of using them. As a result, innovation is difficult, though not absent. 

 



 

[1] Given a variety of locations with different relative prices, there will be a best location for supply of the most productive factor. Therefore, firms can raise productivity by moving to a site with a larger supply and lower relative price of the most productive factor, so for any one location there will be a better technology in use somewhere else (but with different relative prices). However, firms face search and switching costs when looking for new technology, and sunk costs in adopting one.  

 

 

Tuesday, 19 December 2023

How to Research the Construction Industry?

Recent additions to the Construction Economics library

 

 



The construction industry is not like the typical industry found in economic textbooks, due to the physical nature of the product, the variability of demand, the method of price determination by auction, the contractual relationships between clients, contractors and suppliers. These characteristics require adjusting economic principles to adequately reflect the industry. Further, those four characteristics of construction vary between countries, as do the regulatory systems in different places. 

 

So, given this diversity of industry participants, products and process, how should research into the structure and performance of the construction industry and the management of firms and projects be done? Obviously, a variety of perspectives and a multi-disciplinary approach are required, and this is where Construction Economics (CE) contributes.

 

CE is the application of economic principles to the construction industry. However, because of the distinctive characteristics of the organisation of construction processes, the structure of construction markets, and the management of construction firms, this is not a straightforward process. Therefore, CE research uses a broad range of approaches to research the construction industry, its firms and projects. These include industrial organization and other management studies, financial and behavioural economics, econometric analysis and modelling, cost modelling, legal and institutional research, and transaction cost economics.

 

The library of CE research has been growing recently. The nine books below share an economic perspective that focuses on firms and industries rather than individual projects, which differentiates them from other books on specific topics like procurement, estimating, cost management, and life cycle costs, although all these topics are included in the CE books. This combining of economic theory and techniques with industry specific knowledge is a distinctive characteristic of CE research, and although most of the authors are academics, many of them have industry experience. 

 

In these recent publications the range of topics covered include the roles of participants and processes, productivity and value for money, environmental performance and sustainability, the delivery process and procurement, the financing, viability and competitiveness of construction firms and projects, technological and institutional development, construction statistics and measurement, international construction, regulation, decarbonisation, and government policies affecting the industry. Across the books there are differences in emphasis, sometimes marked. 

 

These books should become standard references for researchers and people working on policy issues related to construction and the built environment. They cover an extremely wide range of topics, many of which overlap related areas like business and project management, industry development and policy, innovation, sustainability and data quality. Some of the topics and issues discussed are extremely difficult to nail down, and there are a few general themes that weave through all the books.  

 

As these books show, when researching construction a variety of perspectives are required, some of which come from outside the neoclassical model of firms and markets, such as institutional or development economics. Therefore, CE has developed a distinctive research agenda on the production, delivery and management of the built environment in a wide range of conditions and countries. The five edited volumes have a total of 70 chapters, 10 of which are introductions and conclusions. The remaining 60 chapters demonstrate the current state of CE research and represent the range and diversity of that research. 

 

There are eight books from academic publishers. The five edited volumes, and three textbooks. Included at the end are links to the publishers’ websites where the table of contents, authors and descriptions for their books can be found. As academic publications they are not cheap, which unfortunately limits the potential readership, and the books will therefore be read mainly by academics and researchers through their institution’s library. Perhaps future collections could republish some of this work as in cheaper ebook and paperback options. 

 

Declaration of interest: I contributed one or more chapters to the edited volumes, two as co-author with Jim Meikle, and the Foreword to Christian Brockmann’s Construction Microeconomics. There is a ninth book, my one on technology and construction, at the end. 




 

 


Ofori, G. (ed.) 2022. Research Companion to Construction Economics, Edward Elgar

 

The book has 24 chapters in a collection that ‘represents a relatively complete work on the field of construction economics.’ And that’s right, there is a bit of everything: costs, markets, history, data, procurement, ESG, developing countries and so on. The table of contents are well worth a look, with the multi-disciplinary nature of CE on full display. The book gathers several decades of research in an overview of CE in 2022. 

 

It is thus a heavyweight academic publication, the chapters are comprehensive, dense and detailed and, as you would expect in a handbook, meticulously referenced. Intended as a library resource, it will be the starting point for researchers on many topics in CE and related fields for many years to come. 

 

Edited by George Ofori, the book makes the case for CE as an alternative to other approaches to researching construction that focus on issues such as culture or project management. His Introduction on the development of CE and review of the chapter topics can be downloaded from the e-elgar site by going to the link for a sample chapter under the Add to basket button. He started with this definition:

 

‘Construction Economics applies economic theory, concepts and analytical tools to the construction industry, the companies and organisations comprising it, and the projects it undertakes. Over time, the field has been extended beyond the minimisation of capital cost on projects to include life-cycle cost considerations, the idea of value, sustainable construction and climate change, and applications of technology. Attention has also been extended to include consideration of companies and organisations; and the strategic, industry-level considerations involving the economy and construction markets, changing government policy, and international finance and economics.’ 

 

Not only is this an excellent definition of CE, it also makes clear the range of topics and issues CE can make a contribution to. The book is a significant milestone in the development of CE.

 

 


Gruneberg, S. (ed.) 2019. Global Construction Data, Taylor & Francis

 

In his Preface Stephen Gruneberg, the editor of Global Construction Data, says the ‘book covers several theoretical and practical aspects of global construction statistics and their use. It demonstrates the diversity of approaches and points in the direction of a need to co-ordinate the measurement of national construction industries’. The diversity of approaches is the great strength of the book, which demonstrate both the range of CE and its application.

 

The ten contributions include three with detailed discussion of construction statistics, two on international comparisons, two use residential cost data for life-cycle costing and energy use respectively. The other three cover innovation and BIM, the global market for architectural services, and international contractor’s make-buy decisions. Taken together these chapters cover construction data at the international, national and project levels. 

 

The way we see and understand an industry starts with the data provided by national statistics agencies. How data on Construction is collected and how the categories within Construction are defined is clearly important. The former determines the quality and the latter the credibility of the statistics produced. In the title the book made explicit the importance of this as a specific topic in CE research. The reliability and quality of construction statistics is a well-known issue, going back to the 1960s, and the shortcomings of the SNA and SIC have not been overcome in the revisions since then. 

 

 


Best, R. and Meikle, J. (eds.) 2023. Describing Construction: Industries, projects and firms, Taylor & Francis

 

The last in a series of three CE books edited by Rick Best and Jim Meikle, Describing Construction addresses the question ‘What exactly is the ‘construction industry’? Research on defining and measuring construction at many different scales is a distinctive characteristic of CE, as this is not done elsewhere. The scales range from firms to projects to the broad construction industry, which includes all participants in the supply chain. The book has contributions at the three scales of industry, project and firm.

 

The chapters on industry definitions and boundaries, which includes one on construction in developing countries, argue for a new perspective on construction and for better data. At the project level, there are chapters on estimating, procurement and contracting. The chapters on firms cover characteristics and financial failure, strategic planning, innovation and industry transformation. The book combines several chapters that are analytical and empirical (using or about data) with some more general chapters that provide an overview of their topics. 

 

All the contributors to the 36 chapters in this series of books have extensive industry experience, which is apparent in the depth of discussion and awareness of the issues involved. The books will be used by researchers investigating construction and related industries for many years to come.  

 

 


Best, R. and Meikle, J. (eds.) 2919.  Accounting for Construction: Frameworks, productivity, cost and performance, Taylor & Francis

 

The second book from Rick Best and Jim Meikle was Accounting for Construction: Frameworks, productivity, cost and performance. The dozen contributions again look at different ways of measuring and comparing construction. With chapters on construction statistics, productivity, costs and data, the book both reviewed and extended previous studies. An ‘important thread’ was the lack of consistency in the way construction industry data is collected and how it is aggregated. 

 

Several chapters look at national construction statistics and their many peculiar characteristics in detail, explaining how data is collected and processed in national statistics. Issues affecting productivity performance and measurement are also discussed in several chapters, such as the building cycle, capital stock, innovation and the relationship between input costs and the technology used. 

 

The book is dense with information, with key topics that reappear across the chapters in different contexts with different perspectives. It is a starting point for construction economists and others who want to understand how industry data is compiled and can used, more about the nuts and bolts of construction data compared to the previous book on Measuring Construction, which was more of a toolkit. 



Best, R. and Meikle, J. (eds.) 2015.  Measuring Construction: Prices, Output and Productivity, Taylor & Francis

 

In Measuring Construction: Prices, output and productivity Rick Best and Jim Meikle put the focus on data sources and quality. As the introduction makes clear ‘there are standard methods for measurement of physical building work, but the same cannot be said for the characteristics of the construction industry’. The three broad topics addressed are costs and prices, activity and internationalisation, and construction productivity. Their conclusion was ‘there is no ‘correct’ answer to any of the questions this book explores … It is perhaps only by applying a variety of techniques to the various problems and comparing the results that we obtain that we will know if we are getting closer to developing an acceptable set of tools and methods.’

 

The chapters survey issues in the collection and use of construction data. The twelve contributions cover measurement of construction work, productivity measurement methods, and construction costs and prices at the global, national, industry and project levels. On each of these topics the research is detailed and focused, there are useful analytical and methodological insights, and a few chapters have models that could be applied and developed. 

 

There is a great deal of data in the book, as you’d expect from the title, and good empirical work showing how comparisons can be made and data used. One of the chapters on productivity argued for the use of artificial neural networks (i.e. AI) for construction estimating and management, a particularly forward-looking contribution in 2015.

 


 Brockmann, C. 2023. Construction Microeconomics, Wiley Blackwell

This is the first book to focus on microeconomic aspects of construction, and that focus allows an extended discussion of topics than found in previous CE books. Microeconomics studies the interaction of producers and consumers of goods and services in specific industries and markets, and the tools and techniques used are well-known. In a simple exchange market, where the transaction is complete, the analysis of demand and supply is relatively straightforward, but construction markets are not like that. Christian Brockmann introduces the idea of contract goods that are delivered over time and priced by bids from contractors, and the analysis of how those characteristic features of construction affect the behaviour of owners and contractors in Construction Microeconomics is both original and insightful.

 

Chapters 2 to 9 cover micro basics: principles, consumers, producers, perfect markets, imperfect markets, factor markets, information, and game theory/auctions. Part II contains the adaptation of microeconomics to construction, with chapters on the construction sector, owners, contractors, construction goods, construction markets, contracting, imperfections, government policy, and public goods.

 

This book discusses the behaviour of firms and the nature of construction products and processes in detail. In particular, bidding for work in auctions and contracting under uncertainty for owners and clients who are risk adverse raises complex issues around marginal costs and prices, incentives and behaviour, and information asymmetry and bargaining power. The analysis draws on developments in industry economics to support the points made and the approach taken. 

 

This micro focus of the book provides a deeper understanding of the complex relationships between construction industry participants, and has been deeply informed by the author’s industry experience. It demonstrates how economic principles can be applied to a market that uses auctions and tenders to set prices, essential knowledge for regulators and management in industry. 

 

Christian Brockmann has built on previous work and brings a new perspective to issues and topics that are fundamental to CE. The book will be of interest not just to academic researchers but also to industry, regulators and policy makers. His Construction Microeconomics focuses on the operation and organisation of construction from a micro perspective, and is an important addition to the CE library. A companion volume is in the works: Construction Macroeconomics, by Horst Brezinski, Christian Brockmann, Kira Coleman and Huojin Xiong.

 

 


Gruneberg, S. and Francis, N. 2019. Economics of Construction, Agenda Publishing

Stephen Gruneberg and Noble Francis’ The Economics of Construction provides ‘a game theory account of the behaviour of firms’, the approach typically taken in other branches of industry economics. The Gruneberg and Francis book does not have much discussion on macroeconomic matters, however they discuss innovation and productivity, aspects of firms’ business models and financing, and contractual disputes and power relations in construction. 

 

There are case studies of the collapse of UK contractor Carillion in 2018, the Grenfell Tower fire, construction for the London Olympics, and manufactured housing in the UK. These are used to illustrate how the business environment a construction firm faces has become significantly more complex over the decades as the traditional turnover and profit maximizing contractor or supplier has evolved into one primarily concerned with growth and survival. While that may be a matter of degree, it is not insignificant. 

 

Gruneberg and Francis argue contracting markets compete profits down to the point firms cannot invest in productivity improvements, the outcomes of a business model that tends to focus on the volatility of demand and managing risk at the expense of improving efficiency. Construction firms operate in an industry Gruneberg and Francis describe as ‘a highly fragmented project-based industry, with very low profit margins and a high risk of failure for the many firms operating in a very complex supply chain’. This is a widely held view, however many large construction firms are over 50 years old and there are significant barriers to entry for major projects. It is an industry with a majority of small firms and relatively few large multinational contractors and manufacturers, some of which have substantial bargaining power in the supply chain. 

 

In the last two chapters they point to an emerging field of research on the economics of construction projects, combining project financial and feasibility studies with procurement strategies, using research applying transaction cost economics to construction. The book is an outstanding example of CE research as the application of economic principles to construction. It combines industry specific knowledge with insights from economic reasoning and shows how those insights improve our understanding of the industry.

 


 Myers, D. 2022. Construction Economics: A new approach (5th ed.) Routledge

 

Danny Myers Construction Economics: A new approach is intended for undergraduate students in construction and other built environment courses who have a single economics subject included in the course. The new approach is sustainability. Although UK-centric, this is a readable and accessible introductory textbook that has a bit of everything.

 

It starts with the fundamentals of economic theory on firms and markets, and then analyses competition, demand, tendering, costs and prices. The main micro, macro and industry economics topics are covered, and the relevance to construction is maintained through breakout boxes with short examples and case studies from construction throughout the book, which are a feature. 

 

Myers emphasises environmental issues and sustainability, and this is another one of the reasons for its success as these topics have become embedded in university curricula. The book is now in its fifth edition, which is I think another milestone in CE, and Danny Myers is to be congratulated on the achievement. 

  




de Valence G. 2022. Creative Destruction and Constructing the Built Environment: From the first industrial revolution to the fourth, CER

 

This is my book about technological change, general purpose technologies (like steam power, IT and AI), and construction since 1800. Because I can set the price it is cheap, not expensive, and available from Amazon. The Introduction can be read here.

 

Creative destruction is the effect of technological progress on the economy as, over time, new technologies bring new industries and products to challenge established industries. Innovation and technology have restructured construction of the built environment in the past, and today powerful new technologies like digital twins, AI and 3D printing are leaving their development stage and finding their way into the design and delivery of buildings and structures. The book argues it might take a decade or more for these technologies to become central to construction of the built environment, but the development path taken will be distinct and different from the path taken in other industries. This path dependence varies from both industry to industry and between firms within industries. 

 

 

 

Publishers’ Pages 

 

Best, R. and Meikle, J. (eds.) 2023. Describing Construction: Industries, projects and firms, Taylor and Francis.

 https://www.routledge.com/Describing-Construction-Industries-Projects-and-Firms/Best-Meikle/p/book/9780367608903

 

Best, R. and Meikle, J. (eds.) 2919.  Accounting for Construction: Frameworks, productivity, cost and performance, Taylor & Francis.

https://www.routledge.com/Accounting-for-Construction-Frameworks-Productivity-Cost-and-Performance/Best-Meikle/p/book/9781032093246#

 

Best, R. and Meikle, J. (eds.) 2015.  Measuring Construction: Prices, Output and Productivity, Taylor & Francis.

 https://www.routledge.com/Measuring-Construction-Prices-Output-and-Productivity/Best-Meikle/p/book/9780367738341

 

Brockmann, C. 2023. Construction Microeconomics, Wiley Blackwell.

https://www.wiley.com/en-ie/Construction+Microeconomics-p-9781119831938

 

de Valence G. 2022. Creative Destruction and Constructing the Built Environment: From the first industrial revolution to the fourth, CER.

https://www.constructioneconomicsresearch.com/creative-destruction-book

 

Gruneberg, S. (ed.) 2019. Global Construction Data, Taylor & Francis. 

https://www.routledge.com/Global-Construction-Data/Gruneberg/p/book/9781032177472

 

Gruneberg, S. and Francis, N. 2019. Economics of Construction, Agenda Publishing. 

https://www.agendapub.com/page/detail/the-economics-of-construction-by-stephen-gruneberg/?k=9781788210157

 

Myers, D. 2022. Construction Economics: A new approach (5th ed.) Routledge. 

https://www.routledge.com/Construction-Economics-A-New-Approach/Myers/p/book/9781032262611

 

Ofori, G. (ed.) 2022. Research Companion to Construction Economics, Edward Elgar.

https://www.e-elgar.com/shop/gbp/research-companion-to-construction-economics-9781839108228.html