Wednesday, 7 December 2016

The Use of Drones in Construction

 The Cutting Edge No. 2


This is a collection of reports on the web from the last year or so on how and where drones have been used. There is probably a lot of other research and use going on that is not available and has not been reported, or is not on company or university websites, but I think this gives a fair idea of the state of play.

Drones are the big new thing in construction at the moment, but as always with new construction technology it is hard to get a good idea of how widespread their use, is or indeed how useful they are. Given the rapid uptake of BIM, tablets and apps in the US industry (see here and here) its not surprising that they also appear to be at the cutting edge with drones. That said, its hard to know how good the integrated systems from Skycatch and Droneview actually are, as there are no independent reports available so far. On the other hand, these companies have already got commercial products onto the market, and appear to be the first entrants.

It is worth noting that one effect of drones that monitor site progress against plans and schedules will be greatly increased transparency of project performance. I’ll discuss that topic in a later post, but there are some obvious implications of quality real-time information for clients, contractors and workers, though different in each case.



Drones are in regular use at Crossrail, a big project in London about to finish, although as far as I can tell they only have two in operation:
  • Site inspections - close examination of high-risk areas, and speedy overviews of large sites, freeing up time for other tasks.
  • Health and safety Induction – site plans can be quickly and efficiently updated to show where different works are taking place ensuring that operatives stay safe.
  • Crane, tower and scaffold inspection – a much easier method of doing inspections, providing real-time footage to spot anomalies. This reduces site downtime and mitigates risks of personnel having to work at height.
  • Site planning – overviews can be obtained quickly to inform planning sessions.
  • 360° panoramas – a more immersive experience to enhance appreciation of potential hazards and site orientation.


The French company claims to be a leader in the field, with four subsidiaries using drones:
  • Omexom, the subsidiary that handles electricity grids, is using helicopter-style drones to observe the condition of pylons and insulator chains.
  • At Eurovia drones are used in quarries to carry out topographic surveys and measure the likely reserves of the aggregate.
  • Nymphea uses underwater drones, known as remote survey vehicles, to assess the condition of structures such as bridge caissons, either with visual cameras or with acoustic devices that measure the extent of corrosion on metal structures.
  • Vinci Autoroutes uses drones that hover about 100m above the ground to build a 360 degree picture of the landscape along a particular road. The idea is to enable clients to see themselves from above, which they can do by linking to the drone’s cameras with their mobile phones or tablet computers.



The US contractor’s drone programme is the result of its decision in 2013 to team up with Skycatch a Californian start-up that attracted investment from Google, among others. The firm was founded to build drones for data collection on building sites. Christian Sanz, the founder and chief executive of Skycatch, said the aim was to have a fleet of drones continually flying over the works to capture real time information about their progress, prevent mistakes and detect unsafe situations.

Bechtel uses the technology to collect real-time environmental data such as air quality and temperature, monitor safety, survey difficult and inaccessible terrain and track real-time construction progress. The data collected can be stored in a cloud and viewed on site using handheld and desktop computers using the Skycatch dashboard. The technology was used at Bechtel’s three Curtis Island LNG projects in Australia, which are more or less complete and now in production.


 

Komatsu’s Smart Construction uses automated dozers and excavators. Komatsu partnered with Skycatch, and claim to have created the world’s first machine-to-machine automated construction equipment. The Smart Construction initiative uses Skycatch autonomous aerial robots for data collection, point cloud maps with 1 cm accuracy, visual intelligence and advanced data analysis. Skycatch UAVs scan job sites to capture imagery and automatically generate accurate 3D site data. This data is then compared with 3D drawings of the site to automatically calculate the area and volume of earth to be moved. The results are transmitted as instructions to Smart Construction machinery for fully autonomous work on the site.



The company provides aerial imaging including 2D and 3D models to assist project managers, general contractors, site superintendents and engineers in tracking construction progress, measuring material stockpile volumes, improving environmental compliance, providing timely site surveys and real time mapping, improving safety and maintaining project schedules and budgets. Integrates with CAD and BIM software to facilitate collaboration and enhance real time decision-making.

They have a very interesting page on industry resources here. This lists 2016 conferences (all except one in the US, which was on insurance in London), a large number of software products, and drone insurance providers.



Their website doesn’t have a lot of information, but on this page they have some good videos, including the Sacramento Kings' stadium in California in the next item. I assume this means they provided the imaging for the software system under development there.



In August 2015, MIT Technology Review reported that drones were being used on the construction of the Sacramento Kings' stadium in California. Drone footage of progress on site was converted into a 3D model that could be compared to digital drawings to identify where progress was behind programme. The system was developed at the University of Illinois, where Mani Golparvar-Fard and his research team are developing GPS enabled quadcopters that will be computer-controlled to fully automate data collection, analysis and reporting of progress on the construction site. They have also developed a way for these robots to install cameras on elements of the site automatically.

In order to test and develop their system, the researchers were granted access to several construction sites around the U.S. being operated by Zachry Construction and Turner Construction, including their Sacramento Kings project. The University granted access to a current residence hall construction site, there is a video that shows the project on their campus at Urbana-Champaign.

Their system works this way: the quadcopters take photos and videos of the construction site, guided by a cloud-based computer program that can direct them to the rights spots, resulting in automatic data collection. The activities of the aerial robots are fully autonomous, including take off, navigation, landing and charging. The captured images and videos are then used to create an actual 3D model of the site under construction. The system compares this automatically generated 3D model to the as-designed 4D (3D plus time) Building Information Model, resulting in more frequent and complete progress monitoring information. The system also autonomously mounts battery-operated and WiFi-enabled surveillance cameras on different elements of the site to automatically capture videos of ongoing construction operations. Once the data is captured and transferred to the cloud, the system automatically detects and tracks workers and equipment in real time from the video feeds and categorizes activities of the resources automatically. The progress and activity monitoring results are visualized in a web-based, 4D augmented reality (D4AR) environment—a representation of the construction site in 4D with additional performance information superimposed on it. These D4AR models can also be made available to construction professionals through smartphones and tablets



Christian Eschmann is a researcher at the Fraunhofer Institute for Non-Destructive Testing IZFP in Saarbrücken, Germany, where he develops and adapts micro-aircraft for building inspections: “For a 20 by 80 meter wide façade, a test engineer needs about two to three days. Our octocopter (eight motors) needs three to four hours for this.” Cracks and other flaws can be digitally photographed in high resolution. If necessary, the octocopter can also be equipped with a thermal imaging camera, to check things such as building insulation.

The image yield is high, a15-minute flight can result in up to 1,200 photos. On the computer, the individual images are combined to create an overall picture, and the resulting 2D and 3D data models illustrate the visually imageable condition of the building structure. In the future, there will be software to delete any superfluous images. A complete software suite is planned for the future, including damage recognition, image processing, a database and documentation, as well as the automation of all operations, including stitching of individual images and identification of crack patterns. The octocopter took to the air in 2011 for its first inspection. So far, it has needed to be controlled manually. Eschmann and his colleagues are currently (in 2014) working on navigation sensors which will control the flying robot in the future. Following a predetermined pattern, these sensors will steer the octocopter along the façades, floor by floor, from one side to the other.



The UK contractor used a drone for surveying to capture detailed images of the construction path. Apart from surveying, the drone came in useful following a 2014 road traffic accident when it was flown in to record the incident scene and examine how local traffic management was set up.


This is the second in an ongoing series of posts about technology trends in the building and construction industry. The first is here.

26 comments:

  1. Your post is extremely helpful. construction company in london I will keep following. Thank you for sharing this information.

    ReplyDelete
  2. Thanks for sharing such informative post. Real estate photographer sydney offers attractive real estate photography. Property Photography for Hotels, Restaurants & Airbnb, including Floor Plans, VR tours, video & more.
    drone videography Sydney

    ReplyDelete
  3. Thanks for sharing information with us. If you are interested to know about Drone Photography in Florida, so visit the official website.

    ReplyDelete
  4. This is one the best blogs I have came through. Attractive civil engineering photography service provider offers top aerial videography for the wedding event, agricultural and roofing inspection.
    Professional drone photography NZ

    ReplyDelete
  5. It's one of the best blog I have came through, keep sharing such updates.
    drone inspection

    ReplyDelete
  6. Hey i glad to see your article actually I was searching something regarding Drone Service Providers than I got your article. Thanks for sharing your idea about Drone.

    ReplyDelete
  7. Thanks for sharing this beautiful information with us! We provide house preventive maintenance services in which we use drones to safely access roofs that people cannot go to identify problems quickly.Call us!

    ReplyDelete
  8. Thanks for sharing useful information for us.I really enjoyed reading your blog, you have lots of great content. Please visit here. Drone Kits For Schools Wonderfully written blog post with the benefits.

    ReplyDelete
  9. Great Post, I m very happy to read these blog. You want to know more
    Building Information Modelling Company Get In Touch With Us.

    ReplyDelete
  10. Rvtcad offers Point Cloud to BIM Modeling services in the USA, providing a seamless transformation of real-world structures into digital assets. Their expertise lies in converting laser-scanned point cloud data into detailed and accurate 3D Building Information Models (BIM).

    ReplyDelete
  11. Rvtcad excels as a premier Scan to BIM Service provider in the United States, laser scan data into highly accurate and detailed Building Information Models (BIM). Our expert team ensures seamless integration of scanned information, empowering architects, engineers, and construction professionals with precise digital representations for efficient and informed decision-making in building projects.

    ReplyDelete
  12. Rvtcad, 3D laser scanning stands as a transformative force in the realms of architecture and construction. Its precision in documentation, efficiency in design and planning, real-time monitoring capabilities, and contributions to safety and cost savings are reshaping the way professionals approach their craft.

    ReplyDelete

  13. We excel in Scan to BIM and 3D laser scanning solutions, crafting precise 3D BIM models through Autodesk software such as Revit, AutoCAD, Recap, Archicad, and more. Our Scan to BIM services extend globally, catering to Building Information Modeling (BIM) needs in the United States, United Kingdom, Germany, Italy, Spain, Australia, Poland, the Netherlands, and over 30 other countries worldwide.

    ReplyDelete
  14. This comment has been removed by the author.

    ReplyDelete
  15. Thank you so much for the post you do and also I like your post.
    Concrete Transit mixer karachi. Allied group is a renowned name synonym to success, integrity and prestige in Pakistan since 1976.

    ReplyDelete
  16. Rvtcad simplifies BIM laser scanning, enhancing efficiency for companies. With precise data capture and seamless integration, it minimizes errors and optimizes project timelines. Boosting accuracy and collaboration, Rvtcad ensures smooth construction projects for enhanced success.

    ReplyDelete
  17. Rvtcad is a leader in BIM Laser Scanning, which turns detailed scans into accurate BIM models. Our Scan to BIM service ensures everything fits perfectly in construction plans. Choose Rvtcad for easy, efficient, and top-notch digital construction solutions.

    ReplyDelete
  18. Hello Gerard,

    It is an interesing read on how the world of construstion is changing with new technology. I am sorry for not being very good with the technical detials.

    I firmly believe that use of drones in contruction, although being in the fog for now, willl know increase with time. This would be because drones make it easy to get prespecctive like never before, and in due time, the process should become easier.

    I hope the future of construction, with drones , will be safer and more productive.

    Best Regads for the future!

    ReplyDelete
  19. Thanks for sharing nice information. You want to know more about Scan To BIM Services Get In Touch With Us.

    ReplyDelete
  20. The use of drones in construction has transformed how sites are monitored, providing real-time data and enhancing project efficiency. At FleetsWorld, we recognize the impact of drone technology on fleet management and construction, helping businesses streamline operations and improve accuracy in large-scale projects.

    ReplyDelete
  21. You've written an excellent post, and you've shared it with us. Your article provided me with some unique and useful knowledge. I appreciate you sharing this text with us. Automated Construction Monitoring

    ReplyDelete
  22. Thank you so much for sharing this information with us. if someone is looking for the Commercial Drone Insurance then Integrity Insurance Solution is the right place for them.

    ReplyDelete
  23. Rvtcad offers expert Scan to BIM and Scan to CAD services across the United Kingdom. Using advanced laser scanning technology, we create accurate 3D models and 2D drawings tailored for architectural, structural, and MEP needs. Trust us for precise, clash-free integration and seamless collaboration in your construction or renovation projects.

    ReplyDelete

Thank you for your comment and for reading the blog. I hope you find it interesting and useful. If you would like to subscribe the best way is through Substack here:
https://gerarddevalence.substack.com

Thank you
Gerard