The Cutting Edge No. 2
This
is a collection of reports on the web from the last year or so on how and where
drones have been used. There is probably a lot of other research and use going
on that is not available and has not been reported, or is not on company or
university websites, but I think this gives a fair idea of the state of play.
Drones
are the big new thing in construction at the moment, but as always with new
construction technology it is hard to get a good idea of how widespread their
use, is or indeed how useful they are. Given the rapid uptake of BIM, tablets
and apps in the US industry (see here and here)
its not surprising that they also appear to be at the cutting edge with drones.
That said, its hard to know how good the integrated systems from Skycatch and
Droneview actually are, as there are no independent reports available so far. On
the other hand, these companies have already got commercial products onto the
market, and appear to be the first entrants.
It is
worth noting that one effect of drones that monitor site progress against plans
and schedules will be greatly increased transparency of project performance. I’ll
discuss that topic in a later post, but there are some obvious implications of quality
real-time information for clients, contractors and workers, though different in
each case.
Drones are in regular use at Crossrail, a big project in London
about to finish, although as far as I can tell they only have two in operation:
- Site inspections - close examination of high-risk areas, and speedy overviews of large sites, freeing up time for other tasks.
- Health and safety Induction – site plans can be quickly and efficiently updated to show where different works are taking place ensuring that operatives stay safe.
- Crane, tower and scaffold inspection – a much easier method of doing inspections, providing real-time footage to spot anomalies. This reduces site downtime and mitigates risks of personnel having to work at height.
- Site planning – overviews can be obtained quickly to inform planning sessions.
- 360° panoramas – a more immersive experience to enhance appreciation of potential hazards and site orientation.
The
French company claims to be a leader in the field, with four subsidiaries using
drones:
- Omexom, the subsidiary that handles electricity grids, is using helicopter-style drones to observe the condition of pylons and insulator chains.
- At Eurovia drones are used in quarries to carry out topographic surveys and measure the likely reserves of the aggregate.
- Nymphea uses underwater drones, known as remote survey vehicles, to assess the condition of structures such as bridge caissons, either with visual cameras or with acoustic devices that measure the extent of corrosion on metal structures.
- Vinci Autoroutes uses drones that hover about 100m above the ground to build a 360 degree picture of the landscape along a particular road. The idea is to enable clients to see themselves from above, which they can do by linking to the drone’s cameras with their mobile phones or tablet computers.
The US contractor’s drone programme is the result of its decision
in 2013 to team up with Skycatch
a Californian start-up that attracted investment from Google, among others. The
firm was founded to build drones for data collection on building sites. Christian Sanz, the founder and chief executive of
Skycatch, said the aim was to have a fleet of drones continually flying over
the works to capture real time information about their progress, prevent
mistakes and detect unsafe situations.
Bechtel uses the technology to collect real-time environmental
data such as air quality and temperature, monitor safety, survey difficult and
inaccessible terrain and track real-time construction progress. The data
collected can be stored in a cloud and viewed on site using handheld and
desktop computers using the Skycatch dashboard. The technology was used at
Bechtel’s three Curtis Island LNG projects in Australia, which are more or less
complete and now in production.
Komatsu’s Smart
Construction uses automated dozers and
excavators. Komatsu partnered with Skycatch, and claim to have created the
world’s first machine-to-machine automated construction equipment. The Smart
Construction initiative uses Skycatch autonomous aerial robots for data collection,
point cloud maps with 1 cm accuracy, visual intelligence and advanced data
analysis. Skycatch UAVs scan job sites to capture imagery and automatically
generate accurate 3D site data. This data is then compared with 3D drawings of
the site to automatically calculate the area and volume of earth to be moved.
The results are transmitted as instructions to Smart Construction machinery for
fully autonomous work on the site.
The
company provides aerial imaging including 2D and 3D models to assist project
managers, general contractors, site superintendents and engineers in tracking
construction progress, measuring material stockpile volumes, improving environmental
compliance, providing timely site surveys and real time mapping, improving
safety and maintaining project schedules and budgets. Integrates with CAD and
BIM software to facilitate collaboration and enhance real time decision-making.
They have a very interesting page on industry
resources here. This
lists 2016 conferences (all except one in the US, which was on insurance in
London), a large number of software products, and drone insurance providers.
Their website doesn’t have a lot of information,
but on this page
they have some good videos, including the Sacramento Kings' stadium in
California in the next item. I assume this means they provided the imaging for
the software system under development there.
In
August 2015, MIT Technology Review reported that drones were being used
on the construction of the Sacramento Kings' stadium in California. Drone
footage of progress on site was converted into a 3D model that could be
compared to digital drawings to identify where progress was behind programme. The
system was developed at the University of Illinois, where Mani Golparvar-Fard
and his research team are developing GPS enabled quadcopters that will be
computer-controlled to fully automate data collection, analysis and reporting
of progress on the construction site. They have also developed a way for these
robots to install cameras on elements of the site automatically.
In
order to test and develop their system, the researchers were granted access to
several construction sites around the U.S. being operated by Zachry
Construction and Turner Construction, including their Sacramento Kings project.
The University granted access to a current residence hall construction site, there
is a video that shows the project on their
campus at Urbana-Champaign.
Their
system works this way: the quadcopters take photos and videos of the
construction site, guided by a cloud-based computer program that can direct
them to the rights spots, resulting in automatic data collection. The
activities of the aerial robots are fully autonomous, including take off,
navigation, landing and charging. The captured images and videos are then used
to create an actual 3D model of the site under construction. The system
compares this automatically generated 3D model to the as-designed 4D (3D plus
time) Building Information Model, resulting in more frequent and complete
progress monitoring information. The system also autonomously mounts
battery-operated and WiFi-enabled surveillance cameras on different elements of
the site to automatically capture videos of ongoing construction operations.
Once the data is captured and transferred to the cloud, the system
automatically detects and tracks workers and equipment in real time from the
video feeds and categorizes activities of the resources automatically. The progress
and activity monitoring results are visualized in a web-based, 4D augmented
reality (D4AR) environment—a representation of the construction site in 4D with
additional performance information superimposed on it. These D4AR models can
also be made available to construction professionals through smartphones and
tablets
Christian Eschmann is a researcher at the Fraunhofer Institute for
Non-Destructive Testing IZFP in Saarbrücken, Germany, where he develops and
adapts micro-aircraft for building inspections: “For a 20 by 80 meter wide
façade, a test engineer needs about two to three days. Our octocopter (eight
motors) needs three to four hours for this.” Cracks and other flaws can be
digitally photographed in high resolution. If necessary, the octocopter can
also be equipped with a thermal imaging camera, to check things such as
building insulation.
The image yield is high, a15-minute flight can result in up to
1,200 photos. On the computer, the individual images are combined to create an
overall picture, and the resulting 2D and 3D data models illustrate the
visually imageable condition of the building structure. In the future, there
will be software to delete any superfluous images. A complete software suite is
planned for the future, including damage recognition, image processing, a
database and documentation, as well as the automation of all operations,
including stitching of individual images and identification of crack patterns.
The octocopter took to the air in 2011 for its first inspection. So far, it has
needed to be controlled manually. Eschmann and his colleagues are currently (in
2014) working on navigation sensors which will control the flying robot in the
future. Following a predetermined pattern, these sensors will steer the
octocopter along the façades, floor by floor, from one side to the other.
The
UK contractor used a drone for surveying to capture detailed images of the
construction path. Apart from surveying, the drone came in useful following a
2014 road traffic accident when it was flown in to record the incident scene
and examine how local traffic management was set up.
This is the second in an ongoing series of posts about technology
trends in the building and construction industry. The first is here.
Nice post, here's another interesting one drawings.archicgi.com
ReplyDeleteYour post is extremely helpful. construction company in london I will keep following. Thank you for sharing this information.
ReplyDeleteThanks for sharing such informative post. Real estate photographer sydney offers attractive real estate photography. Property Photography for Hotels, Restaurants & Airbnb, including Floor Plans, VR tours, video & more.
ReplyDeletedrone videography Sydney
Thanks for sharing information with us. If you are interested to know about Drone Photography in Florida, so visit the official website.
ReplyDeleteThis is one the best blogs I have came through. Attractive civil engineering photography service provider offers top aerial videography for the wedding event, agricultural and roofing inspection.
ReplyDeleteProfessional drone photography NZ
It's one of the best blog I have came through, keep sharing such updates.
ReplyDeletedrone inspection
Hey i glad to see your article actually I was searching something regarding Drone Service Providers than I got your article. Thanks for sharing your idea about Drone.
ReplyDeleteThanks for sharing this beautiful information with us! We provide house preventive maintenance services in which we use drones to safely access roofs that people cannot go to identify problems quickly.Call us!
ReplyDeleteThanks for sharing useful information for us.I really enjoyed reading your blog, you have lots of great content. Please visit here. Drone Kits For Schools Wonderfully written blog post with the benefits.
ReplyDeleteGreat Post, I m very happy to read these blog. You want to know more
ReplyDeleteBuilding Information Modelling Company Get In Touch With Us.
Rvtcad offers Point Cloud to BIM Modeling services in the USA, providing a seamless transformation of real-world structures into digital assets. Their expertise lies in converting laser-scanned point cloud data into detailed and accurate 3D Building Information Models (BIM).
ReplyDeleteCCCCC
ReplyDeleteRvtcad excels as a premier Scan to BIM Service provider in the United States, laser scan data into highly accurate and detailed Building Information Models (BIM). Our expert team ensures seamless integration of scanned information, empowering architects, engineers, and construction professionals with precise digital representations for efficient and informed decision-making in building projects.
ReplyDeleteRvtcad, 3D laser scanning stands as a transformative force in the realms of architecture and construction. Its precision in documentation, efficiency in design and planning, real-time monitoring capabilities, and contributions to safety and cost savings are reshaping the way professionals approach their craft.
ReplyDelete
ReplyDeleteWe excel in Scan to BIM and 3D laser scanning solutions, crafting precise 3D BIM models through Autodesk software such as Revit, AutoCAD, Recap, Archicad, and more. Our Scan to BIM services extend globally, catering to Building Information Modeling (BIM) needs in the United States, United Kingdom, Germany, Italy, Spain, Australia, Poland, the Netherlands, and over 30 other countries worldwide.
This comment has been removed by the author.
ReplyDeleteThank you so much for the post you do and also I like your post.
ReplyDeleteConcrete Transit mixer karachi. Allied group is a renowned name synonym to success, integrity and prestige in Pakistan since 1976.
Rvtcad simplifies BIM laser scanning, enhancing efficiency for companies. With precise data capture and seamless integration, it minimizes errors and optimizes project timelines. Boosting accuracy and collaboration, Rvtcad ensures smooth construction projects for enhanced success.
ReplyDeleteNice Post!!
ReplyDeletePlease look here at NDT Inspection Services Perth
Rvtcad is a leader in BIM Laser Scanning, which turns detailed scans into accurate BIM models. Our Scan to BIM service ensures everything fits perfectly in construction plans. Choose Rvtcad for easy, efficient, and top-notch digital construction solutions.
ReplyDeleteHello Gerard,
ReplyDeleteIt is an interesing read on how the world of construstion is changing with new technology. I am sorry for not being very good with the technical detials.
I firmly believe that use of drones in contruction, although being in the fog for now, willl know increase with time. This would be because drones make it easy to get prespecctive like never before, and in due time, the process should become easier.
I hope the future of construction, with drones , will be safer and more productive.
Best Regads for the future!
Thanks for sharing nice information. You want to know more about Scan To BIM Services Get In Touch With Us.
ReplyDeleteThe use of drones in construction has transformed how sites are monitored, providing real-time data and enhancing project efficiency. At FleetsWorld, we recognize the impact of drone technology on fleet management and construction, helping businesses streamline operations and improve accuracy in large-scale projects.
ReplyDelete