Wednesday, 8 February 2017

Disruptive Change in Construction



Why the Nineteenth Century is Relevant

The building and construction industry we see today is the outcome of a long development path. The modern industry has its roots in the beginning of industrialization in the early nineteenth century, a period of rapid, disruptive technological development not unlike the present one. Between 1800 and 1900 the building and construction industry was transformed as an industry, driven by the introduction of new technology, in the form of the new materials of iron, glass and concrete. At the same time the industry was restructured by the rise of large, international contractors and, over a series of major projects, by steam powered machinery and equipment. Today technological change in the form of new materials, expanding abilities and new organizational concepts is once again pushing against the custom and practice of an old, mature industry.

While the specific trends and issues the industry faces today are obviously different, this is the only comparison we have to the disruptive technological changes that are affecting the contemporary building and construction industry. The similarities are significant. It was the beginning of urbanization, and one of the great challenges to the building industry in the nineteenth century was housing for the rapidly growing population of cities. Infrastructure needed to be built on a scale never before attempted, and emerging industries were demanding new types of buildings.

Preindustrial building was similar at the beginning of the nineteenth century to that of the Romans, and many of the hand tools in use then have also been found in excavations of ancient cities in Mesopotamia and Asia. During the preindustrial age, building was seen as a practice rather than a process. Their projects were built manually by large numbers of workers, with a few skilled craftsmen supervised by a small elite. Two hundred years later construction sites at the beginning of the twentieth century were still labour-intensive, with many workers and supervisors on-site, but there was also an impressive range of machinery, plant and equipment in common use. This transition began with the building of the first canals in England, and eventually led to the modern industrialized building industry, and with it the professions of surveyors, engineers and architects who managed these projects.

The canals built in Britain from the early 1700s are the first recognizably modern construction projects, and drew on the expertise of military engineers with experience in embankments and fortifications. Canals, and their associated cuttings, tunnels, bridges, locks, lifts, gates, aqueducts and viaducts, led to technological developments in both materials and organization. In 1781 the first cast iron bridge was opened over the Severn near Coalbrookdale, called Iron Bridge, afterwards iron became widely used as a structural material by engineers like Thomas Telford in Britain (Ellesmere Canal 1805) and Albert Gallatin in America (Erie Canal 1825). The methods used by the engineers who tested these materials, and designed and built the projects, began to be carried over to building projects in the nineteenth century.

In 1800 building and construction used three basic methods, known since the Romans. Work was done by craftsmen using hand tools working under a master builder who was also usually the architect. In American Building James Marston Fitch says two related factors determined the character of building and construction at that time:

  1. Aesthetic standards were determined by what was possible, the technological level of building. Neither the building materials of stone, brick and wood, nor the structural theories of post and lintel, load-bearing wall and arch-and-dome, differed in any important respect from those used by the Greeks and Romans.
  2. Building types required by the economy were relatively few and simple, and could be readily fabricated with these traditional materials along traditional lines.

 When change came to building and construction, it came rapidly. Fitch goes on to describe how, after the Civil War ended in 1860, “the building process began to be industrialized, independent artisans became skilled wage workers, and specialization set in” He says:
 New tools, new materials, and new processes appeared with staggering rapidity to serve as new media for the builders. The metallurgical industries, enormously accelerated by the exigencies of war … Portland cement manufacture … wide development in ceramics and clay products - necessary for fireproofing the new steel skeletons. Production of glass was industrialized, and the huge plate-glass windows of the Victorians were possible.

While the idea of technological disruption is well-known and we are familiar with sunrise and sunset industries, the idea of a technological trajectory, or direction, is also important. Over time industries and products evolve and develop as their underlying knowledge base and technological capabilities increase. The starting point for a cycle of development is typically a new invention, something that is significant enough to lead to fundamental changes in demand (type and number of buildings), design (opportunities materials offer), or delivery (project management). This sort of invention gives a ‘technological shock’ to an existing system of production, and leads to a transition period where the firms involved have to adjust to a new business environment, which in turn usually leads to a restructuring and consolidation of the industry. This is what happened in the second half of the nineteenth century.

Between 1800 and 1900 there were a series of technological shocks to building and construction, as the new materials of iron, glass and concrete opened up opportunity and possibility for designers, for both what was built and how it was done. Both ‘building art and the art of building’ were transformed, not once but several times, over these years as the methods of industrialized building with iron and reinforced concrete were refined. Iron and steel divorced the building frame from the envelope between the Crystal Palace in 1851 and the rebuilding of Chicago after the Great Fire of 1871, and with the separation of the frame from the envelope came mass produced infill materials to replace load-bearing construction. Then the combination of steel and concrete made possible the development of reinforced concrete as well as steel skeleton structures.

Over the 1800s the increasingly widespread use of concrete had changed its status from hobby or craft to a modern industry, as scientific investigation into its material properties revealed its shear and compressive characteristics. With the development of reinforced concrete there was change in architectural concepts of structures and approaches to building with concrete. The industrial standards of concrete technology influenced ways of thinking based on building systems and standardized building elements, and became identified with what was known as the Hennnebique System, a simple to use system of building with reinforced concrete columns and beams patented in 1892. According to Ulrich Pfammatter, by1905 this system had spread across Europe and elsewhere, and Hennnebique’s company employed 380 people in 50 offices and had 10,000 workers. Concrete then set the agenda for the development of the construction industry as a technological system over the next hundred years, driven by the modernist movement in architecture, which explored the possibilities of these materials, and the increasing height and scale of buildings.

So, here we see the relationship between technological change, conceptual thinking and organizational form. While the striking thing is the interrelationship of these three aspects, the driver of these changes is technology, or more precisely new technology that fundamentally changes existing industry practices and delivers a shock to the existing system. In both cases, with the advent of iron-framed and reinforced concrete buildings, the construction industry had to not only master the use of these new materials, but also develop the project management skills the new technology required. That organizational change, in turn, was based on the deeper change in the way of thinking about the world that was fundamental to the industrial revolution and the invention of the scientific method.

So, it’s interesting question whether there is anything to be learnt from these previous periods of disruptive change in building technology, materials and processes. As the Industrial Revolution gathered momentum canals were followed by new roads and buildings, leading eventually to the railway boom of the mid-1800s that spread industrialized construction around the world. At the same time, the new materials of iron, glass and concrete were being introduced and steam powered machinery was being used to manufacture tools and components. In America, where there was a shortage of labour, steam powered excavators and earth movers were appearing on construction sites by mid-century. By then, steam powered hoists were widely used in both the US and UK. Over the last few decades of the nineteenth century the construction industry was transformed.

But why would be experience of the industry over 100 years ago be relevant today? There are two parts to the answer. The first is that the nineteenth century is the only other period of disruptive change we have for comparison. The second is that the effects of technological change on industry structure and performance might plausibly again be in the same key areas as the organization of projects and the mechanization of processes, but in the twenty-first century these effects will be heightened and quickened by the network effects associated with digital platforms and artificial intelligence.


Fitch, J. M. 1966. American Building: The Historical Forces That Shaped It. New York: Shocken Books.
Pfammatter, U. 2008. Building the Future: Building Technology and Cultural History from the Industrial Revolution until Today. Munich: Prestel Verlag.