Showing posts with label industry structure. Show all posts
Showing posts with label industry structure. Show all posts

Monday 1 May 2023

Incremental Innovation in Construction

 The example of concrete


 

Construction of the built environment has an interlocking set of economic, political, legal, and social barriers that make innovating difficult. As long as current technology meets the expectations of clients and users for prices and dominant products, there will be significant market imperfections such as network economies, lumpiness, split incentives, requirements for collective action, and transaction costs that inhibit diffusion of more efficient, advanced technologies. There is also an institutional structure that imposes regulatory hurdles or other policy disadvantages, favours existing technology or discourages new entrants, and a financing system based around incumbents. Educational curricula, career paths, and professional standards use existing technology. And because organizations, people and technical standards are embedded within a production system, the tendency is for technologies to develop along defined trajectories unless or until deflected by a powerful external force.

 

Construction of the built environment is a project-based system of production with complex professional, organizational, contractual and working relationships, and is geographically distributed. Moreover, the context is one of wider networks containing many small and medium size firms with a range of organizational and institutional relationships, where external contracting is common. All these factors are seen as inhibiting, although not preventing, innovation and diffusion of new technology. Within such a system incremental innovation improves industry products and processes without affecting the structure of the system. 

 

In construction, many technical advances have come from materials suppliers or component, plant and equipment manufacturers, who have been responsible for the introduction of new products and equipment, such as excavators, cranes, facades and lifts, using incremental innovation directed at improving existing products and processes. Across the construction supply chain firms don’t create new industrial networks to develop or exploit new technologies such as lifts and elevators, glass facades, and interior wall systems, instead these firms become part of the existing network, which is the modern construction production system. As a well-developed industrial system many of its sub-markets are expected to be concentrated and oligopolistic, with a few large, well-established firms exactly like those economic historian Joseph Schumpeter suggested would be most likely to engage in R&D, invention and innovation.

 

The process where inventions are developed, tested and extended, and finally put into production is one of incremental innovation. Firms refine specific parts of a production system, usually in response to something changing elsewhere in the system as production and distribution methods evolve over time, step by step. Although this form of innovation is incremental, it should not be dismissed as unimportant. Examples are the increase since 1950 of mining truck loads from 4 to 400 tonnes and the increase in lifting capacity of tower cranes to over 1,000 tonnes. Another example is the development of computer-aided design (CAD) software, which went on for two decades before Autodesk was started in 1982, one year after the first IBM PC. Over the decades Building information models (BIM) have advanced through 2D and 3D versions to the 4D (schedule) and 5D (cost) iterations today. Now software linked to cameras on helmets or drones can provide real time augmented reality (AR) images from a building site linked to the BIM model of the project.

 

Building and construction products and processes are the outcome of a long development path. Many of the industry’s global leaders are well-established, Bechtel for example is over 100 years old, and other firms like Hochtief, Skanska, and AECOM can trace their origin stories back over a similar period. Shimizu is over 200 years old. Most of today’s manufacturers also have their roots in nineteenth century firms. It’s a remarkable fact that construction today is a production system that has been developing for more than 150 years, since the arrival of steam, steel and concrete, using incremental innovation to gradually improve products and processes. 

 

In the industry life cycle, after emergence and the initial growth stage, technology stabilises around standardised products and processes. In many cases industries are oligopolistic, with a few specialized firms in market niches or layers in the supply chain. Consolidation leads to industry concentration with large firms dominating their markets, the car industry is an example. Construction materials like cement, concrete and glass, and components like building management systems, interior walls, plumbing fixtures, lifts and elevators are all oligopolistic industries in an established supply chain.[i]

 


 

Incremental Innovation: The example of concrete 

 

The development of concrete is an example of how effective incremental innovation in construction can be. By the 1880s the increasingly widespread use of concrete had changed its status from hobby to a modern industry, as scientific investigation into its material properties revealed its shear and compressive characteristics. With the development of reinforced concrete there was change in architectural concepts of structures and approaches to building with concrete. The industrial standards of concrete technology influenced ways of thinking based on building systems and standardized building elements. These became identified with what was known as the Hennebique System, a simple to use system of building with reinforced concrete columns and beams patented in 1892. By 1905 Hennebique’s system had spread across Europe and elsewhere and his company employed 380 people in 50 offices with 10,000 workers onsite.[ii]

 

Concrete then set the agenda for the development of construction as a technological system over the next hundred years driven by the modernist movement in architecture, as it explored the possibilities of these material for increasing the height and scale of buildings, and modern construction materials and methods.[iii] For over one hundred years, since Hennebique, there has been ongoing refinement and development of the world’s most widely used construction material, as shown in Table 1.

 

Concrete shows how incremental innovation in materials played a significant role in the reorganization of site production methods as mixers, pumps and chemicals were refined and developed in a long process of interconnected innovations. One of the characteristics of a successful technology are these spillover effects, with advances in one industry leading to complimentary developments in related industries. 



Table 1. Incremental innovation in concrete since 1800


Source: Jahren, P. 2011. Concrete: History and Accounts, Trondheim: Tapir Academic Press.



Innovation is continuing today with 3D concrete printing (3DCP). Research into 3DCP has focused on developing the equipment needed and the materials used, and by 2019[iv] over a dozen experimental prototypes had been built. By 2022 the commercialisation of 3DCP was underway, with two types of systems available. One using a robotic arm to move the print head over a small area, intended to produce structural elements and precast components, the other a gantry system for printing large components, walls and structures. 3DCP combines BIM models, new concrete mixtures and chemicals, and new printing machines. Again, a combination of new materials and new machinery is required for this technology to work.

 

In 2022 the Additive Manufacturing Marketplace had 34 concrete printing machines listed, ranging from desktop printers to large track mounted gantry systems that can print three or four story buildings. Companies making these machines are mainly from the US and Europe, and Table 2 also has details on the type and size of a selection of machines. There are also several companies offering 3DCP as a service at an hourly or daily rate.[v]

 

Concrete printing is only one part of the development of additive manufacturing. In mid-2022 the Additive Manufacturing Marketplace listed 2,372 different 3D printing machines from 1,254 brands. The number of printers and materials used were: 364 metal; 355 photopolymers; 74 ceramic; 61 organic; 34 concrete; 24 clay; 20 silicone; 19 wax; and 19 continuous fibres. Many of these printers could be used to produce fixtures and fittings for buildings. Producing components onsite from bags of mixture avoids the cost of handling and transport, and for large items avoids the load limits on roads and trucks. There are also printing services and additive manufacturing marketplaces being set up. These link designers to producers with the materials science, specialised equipment and print farms capable of large production runs and manufacture on demand. Examples are Dassault Systems 3DExperience, Craft Cloud, Xometry, Shapeways, 3D Metalforge, Stratasys and Materialise.


Table 2. Some companies making 3D concrete printers

Source: Additive Manufacturing Marketplace, 2022. 


 

 

Conclusion

 

Innovating in a complex, long established industrial sector like construction of the built environment can be difficult. The institutional architecture can impose regulatory hurdles or other policy disadvantages on new technologies, and government expenditures often support existing technology. Lenders are risk averse. There are subsidies and price structures that favour incumbents and ignore externalities like the environment and public health. Educational curricula, career paths and professional standards are oriented to existing technology. The dominance of existing technologies is further reinforced by imperfections in the market for technology such as network economies, lumpiness, split incentives and the need for collective action.[vi]

 

The construction industry has become used to incremental innovation and a gradual rate of change since the modern industry emerged over the last few decades of the nineteenth century. At the beginning of the twentieth century there was a great deal of resistance to change: ‘the older assembling industries like engineering were slow to change. Each firm took a proprietary pride in its own work’, and the trades were ‘fearful of technological unemployment and fought all changes in conditions of work.’[vii] Nevertheless, by the 1920s construction had reorganised the system of production around concrete, steel and glass. 

 

We are at a similar point today. The development of digital construction using combinations of BIM, offsite manufacturing, 3DCP, drones and robots, is an emerging new system of production, and the adoption and adaptation of these technologies will depend on incremental innovation continually improving their performance, which can only happen if they are put to use. There is a strong case here for public clients, who will be major beneficiaries of the improved efficiency of digital construction, to sponsor demonstration projects that use these technologies and measure the improvements in waste, carbon, defects, time and cost that are delivered. 







[i] Syverson, C. 2019. Macroeconomics and Market Power: Context, Implications, and Open Questions, Journal of Economic Perspectives, 33, 3, 23–43Syverson, C. 2008. Markets: Ready-Mixed Concrete, Journal of Economic Perspectives, 22, 1, 217–233.

[ii] Pfammatter, U. 2008. Building the Future: Building Technology and Cultural History from the Industrial Revolution until Today. Munich: Prestel Verlag.

[iii] Cody, J. 2003. Exporting American Architecture 1870-2000, London: Routledge. 

Huxtable, A. L. 2008. On Architecture: Collected Reflections on a Century of Change, New York: Walker Publishing Company.

[iv] Sanjayan, N. and Nematollahi, B. (eds.) 2019. 3D Concrete Printing Technology: Construction and building applications. Butterworth-Heinemann.

[vi] Bloom, N., Van Reenen, J. and Williams, H. 2019. A toolkit of policies to promote innovation. Journal of Economic Perspectives33(3), 163-84.

[vii] Hughes, T. P. 1989: 495. American Genesis: A Century of Invention and Technological Enthusiasm 1870-1970, Chicago: University of Chicago Press. 



Monday 23 January 2023

Australian Built Environment: Output and Employment

 

Industries are groups of firms with common characteristics in products, services, production processes and logistics, subdivided by the SIC into a four-level structure. The highest level is alphabetically coded divisions such as Agriculture, forestry and fishing (A), Manufacturing (C) and Information and communication (J). The classification is then organized into two-digit subdivisions, three-digit groups, and four-digit classes. SIC codes are therefore two, three and four-digit numbers representing industries, defined as firms with shared characteristics.

The SIC definition of the construction industry captures the onsite activities of contractors and subcontractors, and this data on building and construction work is taken to represent the industry. However, onsite work brings together suppliers of services, materials, machinery and equipment, products, components and other inputs required to deliver the buildings and structures that make up the built environment. When enough firms share sufficient characteristics they are often described as an industry cluster or sector.

The data used here is provided in the Australian Bureau of Statistics annual publication Australian Industry (ABS 8155), produced using a combination of data from the annual Economic Activity Survey and Business Activity Statement data provided by the Australian Taxation Office. The data includes all operating business entities and Government owned or controlled Public Non-Financial Corporations. Australian Industry excludes the finance industry and public sectors, but includes non-profits in industries like health and education and government businesses providing water, sewerage and drainage services. The industries included account for around two-thirds of GDP and the data is presented at varying levels for industry divisions, subdivisions and classes. The most recent issue is for 2020-21.

There is data at the two digit subdivision level for the Construction services and Property operators and real estate services industries. For the subdivisions in Professional, scientific and technical services and Building cleaning, pest control and other services the data includes contributions from other classes outside the built environment. Therefore, for these industries the two digit subdivision estimates have to be weighted using the four digit class data for the built environment component. These proportions are released as supplementary tables and provide data at the class level. Professional, scientific and technical services were included in 2015-16, and in 2016-17 this data was provided for two divisions: Rental, hiring and real estate services, with subdivisions Rental and hiring services (except real estate), and Property operators and real estate services; and Administrative and support services, with subdivisions Administrative services and Building cleaning, pest control and other support services.

The data is not complete because some industries cannot be separated into the relevant classes from Australian Industry. For example, rental of heavy machinery and scaffolding (class 6631) is in subdivision 66 but the data is not available to separate it from the other classes. Also, services such as marketing, legal, insurance and financial are important inputs, but again are not identifiable. Government spending on infrastructure and investment in departments like health and education is included through supply industries, although any maintenance and work done internally will generally not be included. That also applies in industries like retailing and transport where some unknown proportion of work is done in-house.

There is also leakage around the boundaries of industry statistics: some glass is used in mirrors, some in car windscreens; textiles are used in buildings; architects design furniture; engineers repair machines as well as structures, and so on. Because Australian Industry uses tax and business register data, it is the self-classification of firms to SIC industry classes that fundamentally determines the structure and scope of that data. Needless to say, such classifications are not perfect, particularly in regard to large multi-unit or multi-divisional organisations. The data here includes sixteen industries that together form one of the largest and most important industrial sectors in the economy.

Table 1. Australian Built Environment Industries
Supply industries Demand industries              Maintenance industries
Quarrying             Residential property Water, sewerage and drainage
Building construction     Non-residential property Waste collection, and disposal
Heavy and civil engineering     Real estate services          Building and industrial cleaning
Construction services                 Building pest control services
Architectural services                 Gardening services
Surveying and mapping services
Engineering design and consulting
Manufacturing industries


Figure 1.




Table 2. Economic Contribution of Australian Built Environment Industries 2020-21
                                                Employment IVA $billion
Total Australian Built Environment Industries 2,228,000 282
Total Australia Employment and GDP              12,369,000 2,069,178
Built Environment share of Australia total          16.9% 13.6%

Sources: ABS 8155, ABS 5206, ABS 6202.


Figure 2.

Figure 3.


Figure 4.

Figure 5.

The IVA of the sixteen built environment industries contributed 13.6 percent to Australian GDP in 2018-19, within a long-run range between 13 and 15 percent of GDP since 2006-07. The sixteen built environment industries share of total employment was 16.9 percent, and its long-run range was between 16.5 and 17.5 percent of total employment.

Figure 6.

Figure 7.




Tuesday 4 May 2021

Comparing Large and Small Construction Firms

 Output and Income for Australian construction firms 

 

Australian industry data is provided in the Australian Bureau of Statistics annual publication Australian Industry (ABS 8155), produced using a combination of the annual Economic Activity Survey and Business Activity Statement data provided by businesses to the Australian Taxation Office. The data includes all operating business entities and government owned or controlled Public Non-Financial Corporations. Australian Industry excludes the finance industry and public sector, but includes non-profits in industries like health and education and government businesses providing water, sewerage and drainage services. The selected industries included account for around two-thirds of GDP. Excluded are ANZSIC Subdivisions 62 Finance, 63 Insurance and superannuation funds, 64 Auxiliary finance and insurance services, 75 Public administration, and 76 Defence. The most recent issue is for 2018-19.

 

The analysis is based on industry value added (IVA) and industry employment. IVA is the estimate of an industry’s output and its contribution to gross domestic product (GDP), and is broadly the difference between the industry’s total income and total expenses. IVA is given in current dollars in Australian Industry. The data is presented at varying levels for industry divisions, subdivisions and classes, but unfortunately does not include the number of firms. There is, however, some firm size data. Micro firms have less than 5 employees, small firms 3-19, medium firms 20-199 and large firms more than 200 employees. 

 

Figure 1 shows large construction firms have 15% of employment, 30% of wages and salaries and 23% of output. Medium firms have 18% of employment, 27% of wages and salaries and 21% of output, and micro and small firms account for approximately 65% of employment but only 55% of output. The labour-intensive work of small firms largely explains the lack of long-run growth of productivity in construction.

 

Figure 2 shows large firms have twice the level of output and income per employee compared to small and micro firms, and medium firms nearly 50% more. There is no significant difference between micro and small firms. IVA per employee is an imperfect but useful proxy for productivity, and this shows the gap between large and medium size firms is significant. 



The relationship between firm size and IVA per employee is not surprising, large firms are typically better managed than small firms. Management is the most important determinant of the capacity and capability of construction firms, because managerial skills give a contractor greater flexibility. How firms utilise their capabilities differentiates them within a diverse, location-based production system. It is widely recognised there are differences between industries in the way that production is organized and new technology adopted, adapted and applied, but differences within industries generally get less attention. Important differences are the individual characteristics of firms such as their size, the effects of competitive dynamics, and how the adoption of new technology by one company in an industry influences the adoption of technology by other companies in that industry. For building and construction this is significant, not only because of the number of small and medium size firms, but because of the size and reach of the major firms.

 

Figures 3 and 4 show IVA and income per employee for three years respectively. The most recent 2018-19 year is representative of the industry, based on this data. Construction firms convert around a third of their income per employee into IVA per employee, however large firms have twice the income per employee. These figures identify the balance sheet effect, as firms leverage the capital on their balance sheet to maximise revenue and profits. 



Construction has a large number of small firms bidding for work in local markets with little or no control over prices. There is a diminishing number of firms that can deliver large projects in a given region or have national operations, and there are a few dozen multinational corporations in construction. Construction economics has a wide range of views on the types of markets these firms operate in and their competitive behavour. There is, however, universal agreement that construction is an industry of projects, and firms operate in markets for projects of many different types. 

 

The relationship between firm size and contract value is therefore a fundamental reality in construction, and is also the foundation of the relationship between projects and firms. A firm is a legal entity and the typical reporting period is one year. A firm’s income is the cumulative cash flow of their portfolio of projects over a year. The focus on projects and construction management in construction research obscures the role of firms as the ongoing participants in the industry. 

 

For firms in construction markets annual revenue is the aggregated income from current work, or contracts won but not completed. Construction firms and contracts range widely in duration, size and value, but the amount of work a firm can take on must be related to the capital a firm has available. This relationship between firm size and the annual value of contracts or projects undertaken is based on the assumption that construction firms seek to maximize revenue but are constrained by their working capital. In construction the contract packages reflect the complexity of work, so there is a wide range of contract sizes. Construction contracts can, therefore, be arranged based on contract size and complexity. This is a well-known and widely agreed characteristic of the industry, with the relationship first researched in the 1980s. Competing contractors’ bids were affected by the type of project and by the value range, small firms considered both contract type and size, and large firms were more successful when bidding for large contracts. Contract size and complexity are also important because the wide range of contract sizes in the construction market is the major determinant of the number of firms. In a project-based market, defined by project size and complexity, there are many standardized projects but few companies able to undertake particularly difficult projects, those large construction firms deliver large projects and/or with a high degree of complexity.




Wednesday 21 April 2021

Fewer Large Contractors in Australia

Long-run Changes in the Number and Size of Firms in the Australian Construction Industry 



There have been five Construction Industry Surveys (CIS) by the Australian Bureau of Statistics (ABS), the most recent for 2011-12.  All five surveys found the construction industry is overwhelmingly made up of small firms which contribute most of the industry's output and account for almost all of the number of enterprises. Table 1 shows the breakup between contractors in Building and Engineering and the subcontractors in Construction services (which were called trades in the earlier surveys). The 2002-03 survey used different categories of businesses (not establishments) in residential, non-residential and non-building, and trade services and is not comparable with the other surveys. In 2002-03 there were 339,982 businesses of which 269,228 were trade services and 70,753 were residential, non-residential and non-building businesses.




How the size of firms is measured in the CIS has changed twice. The three surveys in 1996-97, 1988-89, and 1984-85 divided firms into three sizes: employ less than 5, employ 5-19, and employ 20 or more. The 2011-12 survey divided firms into small 0-19, medium 20-199 and large with over 200 employees. The 2002-03 survey divided firms by income and the data cannot be compared to the other surveys however, although income was used to classify firms, the 2002-03 survey produced a similar result, finding 90% of firms were small or very small. Here the 1996-97 survey and the 2011-12 survey data is presented. The breakup of firms by size is in Table 2.




In the 1996-97 survey businesses with less than five employees accounted for 94% of all businesses and over two-thirds of all employees. Less than 1% of businesses employed 20 or more. Businesses with less than five employees accounted for slightly less than half the total income and expenses, whereas businesses with employment of 20 or more accounted for almost one-third of these. The data in Table 3 is percentages, showing the importance of the 0.62% of large firms. Their 13.6% of employees earned 32.3% of salaries and wages, generated over 28% of income and nearly 25% of gross output.




The survey in 2011-12 classified firms by the number of employees into small 0-19, medium 20-199 and large with over 200. The same data for the 2011-12 survey is in Table 4. The changes between 1996 and 2012 are revealing. The total number of firms has increased marginally from 195,000 to 210,000, but the share of small firms has increased from 94% to 98% as the number of medium and large firms fell from 12,300 to less than 5,000. There was a trend with the number of medium sized firms decreasing to less than half, while slightly increasing their share of industry employment.

In 2011-12 less than 0.1% of firms were large, employing 18.6 % of the workforce, paying 32% of wages and salaries and generating 27% of industry income and 25% of output. 

 

These are remarkably similar to the 1996-97 CIS numbers, however, the 186 large firms in 2011-12 had almost the same share of employment, income and output that 1,200 firms had in 1996-97. This was a significant increase in industry concentration. In the 1996 survey the 1,200 firms employing 20 or more had a total of 66,000 employees and accounted for 13.6% of employment and 24.4% of industry output. 

 

In 2012 there were 186 firms employing 200 or more with 177,000 employees, accounting for 18.6% of employment and 25.5% of IVA. These long-run changes in industry structure can not only be the result of business failures, which are common with SMEs but less so for large firms. Instead, there has been a long wave of mergers and acquisitions reducing the number of large firms and increasing industry concentration. 


A stylized representation of construction industry firms by market type is in table 8, showing how concentrated markets can be the outcome of either firm size or specialization. Figure 5 relates market type to contract size. As a firm gets larger it takes on bigger projects and compete with fewer other firms. How construction economists sought to reconcile theoretical and conceptual models of construction firms with the messy reality of the construction industry is discussed in the next section.