Tuesday 1 December 2020

Production of the Built Environment as an Industrial Sector

 Industries, clusters and sectors


Parts of the economy that involve many different contributors and participants are often called an industrial or economic sector, an example is the non-profit sector with its wide variety of organisations. Although the idea of an industrial sector has no precise meaning, it is often used to describe a loose collection of firms with one or more common characteristics, like ‘manufacturing’ or ‘the business sector’, though firms in these sectors come from many different industries.

 

The starting point is the concept of an industry, which is defined in the Standard Industrial Classification (SIC) used by national statistical agencies as a group of firms with common characteristics in products, services, production processes and logistics. These firms are classified into a four-level structure. The highest level is alphabetically coded divisions such as Agriculture, forestry and fishing (A), Manufacturing (C) and Information and communication (J). The classification is then organised into two-digit subdivisions, three-digit groups, and four-digit classes.

 

The boundaries around an industry are tightly defined by the SIC, to allow identification of individual industries as producers of goods and services and measurement of their contribution to output and employment in the economy. However, to produce something supplies are needed, purchased from other producers, and these relationships between industries are also important. For example, bricks are manufactured products supplied to property developers to provide buildings for their customers. Many industries are structured around such supply chains and production networks, and when enough firms share sufficient characteristics they are often described as an industry cluster. 

 

An industry cluster brings together a group related firms and was originally applied in the 1990s to specific locations like the wine industry in California’s Napa Valley or Bordeaux in France. Over time, the concept itself broadened as different types of clusters were identified, such as creative industry hubs or knowledge centres. Two types of industry cluster are:

 

1.     Geographical – industries using the same resources in a specific location

·       Movies – Hollywood US, Bollywood India;

·       IT – Silicon Valley CA, Silicon Alley NY, Silicon Glen Scotland, Bangalore India;

·       Leather goods, spectacles and glasses – Italy;

·       Health – Boston US, Oxford England, Chennai India;

·       Electronics – Guadalajara Mexico, Cordoba Argentina, Guangdong China;

·       Finance – London England, New York US, Geneva Switzerland; and 

 

2.     Vertical – a hub and spoke value chain from suppliers to end products

·       Automotive – Detroit US, Dusseldorf Germany, Turin Italy, Curitiba Brazil;

·       Aerospace – Toulouse France (Airbus), Seattle US (Boeing);

·       Smart phones – Guangdong China (Apple), Hanoi Vietnam (Samsung).

 

Some industries do not have central locations like the clusters in IT, wine, finance etc., or major hubs where production is concentrated like automobiles and aerospace. These industries are built around decentralised production, distribution and delivery networks that make their products widely available to clients and customers. Four examples are:

·       Pharmaceuticals – a globally distributed industry, with countries combining some form of domestic production and imported supplies;

·       Shipbuilding – brings many suppliers together in a few locations;

·       Electricity generation – brings many suppliers together in many locations;

·       Building and construction – the world’s most ubiquitous industry, sharing the most widely used materials of wood, clay, glass, steel and concrete. Is this really a cluster?

 

Building and construction, in fact, is only one of the many industries involved in the production of the built environment. There is a diverse collection of industries that create, manage and maintain the built environment. On-site work links suppliers of materials, machinery and equipment, products and components, and all other inputs required to deliver the buildings and structures that make up the built environment. Consultants provide design, engineering, cost planning and project management services. Once produced, buildings and structures then need to be managed and maintained over their life-cycle, work done by another group of related industries. The built environment also needs infrastructure and services like water and waste disposal, provided by yet more industries. 

 

A dense network of many different firms and participants such as this is often called an industrial or economic sector, because it is too diverse and distributed to be a cluster. There is no definition of an industrial sector, beyond a broad collection of firms with one or more common characteristics, like ‘manufacturing’ or ‘the business sector’, though firms in these sectors come from many different industries. There are also sectors based around a definable market, two examples being:

·       Defence - there is no defence ‘industry’ because suppliers come from many different industries like IT, aerospace and shipbuilding, but as a sector share resources and clients; and 

·       Tourism - which brings together the contributions of industries like accommodation, tour operators and entertainment. Australia has an annual Tourism Satellite Account produced each year (cofounded by industry and government). 

 

If the built environment encompasses the entirety of the human built world, then the built environment sector (BES) is the collection of industries responsible for producing, managing and maintaining the buildings and structures that humans build. To be included in the BES an Industry needs a direct physical relationship with buildings and structures. Those industries can be divided into those on the demand side and those on the supply side, like materials or specialised tradesmen, Demand side industries like property developers and facility managers pull output from the supply side, both for new output and for servicing and managing existing assets. Therefore the BES is a sector more like defence than tourism, because it also produces long-lived assets for clients outside the sector (governments and owners respectively) that require repair and maintenance, and that R&M generates significant ongoing revenue for firms across the broad industry sector that produces those assets. 

The concept of the BES is broad and extensive, so cannot be precise and exact. While the boundaries of industries and markets are important, in practice the data and SIC definitions are the starting point for the data used. The industries included are selected because they clearly have a relationship with construction, management and maintenance of the built environment. This may not capture every last contribution to the BES, but it does allow the development of a profile of the sector. Measuring the BES provides data on its relationship to the wider economy and is relevant to a wide range of policies and issues currently facing the built environment. 

Wednesday 21 October 2020

Construction 4.0 Book

 

CONSTRUCTION 4.0

An Innovation Platform for the Built Environment

Edited by Anil Sawhney, Mike Riley and Javier Irizarry

 

 


 A new book on Construction 4 from Routledge. As the table of contents below show, it is a comprehensive  review of the state of play as the technologies of industry 4 get adapted and adopted to construction. The book is good evidence that the built environment industries can (should? will?) be a leading sector for application of these technologies. From the book's introduction:

Modelled on the concept of Industry 4.0, the idea of Construction 4.0 is based on a confluence of trends and technologies that promise to reshape the way built environment assets are designed, constructed, and operated. With the pervasive use of Building Information Modelling (BIM), lean principles, digital technologies, and offsite construction, the industry is at the cusp of this transformation. The critical challenge is the fragmented state of teaching, research, and professional practice in the built environment sector. This handbook aims to overcome this fragmentation by describing Construction 4.0 in the context of its current state, emerging trends and technologies, and the people and process issues that surround the coming transformation.

Construction 4.0 is a framework that is a confluence and convergence of the following broad themes discussed in this book:

• Industrial production (prefabrication, 3D printing and assembly, offsite manufacture)

• Cyber-physical systems (actuators, sensors, IoT, robots, cobots, drones)

• Digital and computing technologies (BIM, video and laser scanning, AI and cloud computing,

big data and data analytics, reality capture, Blockchain, simulation, augmented

reality, data standards and interoperability, and vertical and horizontal integration)

 

The book has 28 chapters. Part 1 has 4 chapters discussing the idea of cyber-physical systems. Part 3 has 4 case studies. The core of the book is Part 2 where the elements of C4.0 are identified and current developments explained. These chapters are:

Potential of cyber-physical systems in architecture and construction

Lauren Vasey and Achim Menges

Applications of cyber-physical systems in construction

Abiola A. Akanmu and Chimay J. Anumba

A review of mixed-reality applications in Construction 4.0

Aseel Hussien, Atif Waraich, and Daniel Paes

Overview of optoelectronic technology in Construction 4.0

Erika A. Pärn

The potential for additive manufacturing to transform the construction industry

Seyed Hamidreza Ghaffar, Jorge Corker, and Paul Mullett

Digital fabrication in the construction sector

Keith Kaseman and Konrad Graser

Using BIM for multi-trade prefabrication in construction

Mehrdad Arashpour and Ron Wakefield

Data standards and data exchange for Construction 4.0

Dennis R. Shelden, Pieter Pauwels, Pardis Pishdad-Bozorgi, and Shu Tang

Visual and virtual progress monitoring in Construction 4.0

Jacob J. Lin and Mani Golparvar-Fard

Unmanned Aerial System applications in construction

Masoud Gheisari, Dayana Bastos Costa, and Javier Irizarry

Future of robotics and automation in construction

Borja Garcia de Soto and Miroslaw J. Skibniewski

Robots in indoor and outdoor environments

Bharadwaj R. K. Mantha, Borja Garcia de Soto, Carol C. Menassa, and Vineet R. Kamat

Domain-knowledge enriched BIM in Construction 4.0: design-for-safety and crane safety cases

Md. Aslam Hossain, Justin K. W. Yeoh, Ernest L. S. Abbott, and David K. H. Chua

Internet of things (IoT) and internet enabled physical devices for Construction 4.0

Yu-Cheng Lin and Weng-Fong Cheung

Cloud-based collaboration and project management

Kalyan Vaidyanathan, Koshy Varghese, and Ganesh Devkar

Use of blockchain for enabling Construction 4.0

Abel Maciel